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The effect of mixed convection instability 
on heat transfer in a vertical annulus 
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Department of Mechanical and Aerospace Engineering, Arizona State University, 
Tempe, AZ 85287, U.S.A. 

Abstract-The hydrodynamic stability of mixed convection in an annulus is studied. The linear stability 
limit for forced flow up a vertical annulus with a constant heat flux applied to the inner wall and the outer 
wall insulated is determined. The result indicates that the fully-developed flow is thermally unstable in 
most regions of an appropriate parameter space. The magnitudes of the finite amplitude disturbances in 
the unstabb region are determined by utilizing Stuart’s shape assumption. Distorted mean flow profiles 
are obtained and the increase in heat transfer rates due to these disturbances are calculated from the results 

and agree well with the experimental data. 

1. INTRODUCTION 

THE STUDY of mixed convection inside ducts is a fun- 
damental problem in heat transfer. However, the 
difficulties of accurately modeling the fluid motion 
and associated heat transfer mechanisms is often 
underestimated. For example, it has been demon- 
strated that mixed convection in vertical ducts is 
likely to be unstable in regions of practical interest 11- 

4]. In these studies the onset of instability is found to 
occur at relatively low heating rates. Unfortunately, 
many correlations for heat transfer rates in mixed 
convection have been obtained using simplified analy 
ses which do not account for mixing induced by the 
presence of these hydrodynamic instabilities. For 
example, it is still common practice when modeling 
mixed convection to assume that the flow can be 
treated as steady and parallel. This assumption greatly 
simplifies the problem since the velocity and tem- 
perature profiles become easily predicted functions of 
the transverse variables only. Irrespective of the well- 
known theory that a velocity profile with an inflection 
point is a sufficient condition for inviscid instability, 
and that viscous flows which contain a point of inflec- 
tion are usually unstable, numerical analyses utilizing 
the parallel flow assumption have continuously led 
to new ‘discoveries’ of physically unrealistic steady 
reverse flow induced by the buoyancy force. The stab- 
ility analyses cited above clearly demonstrate the 
impossibility of the occurrence of such flows. Thus, 
to accurately model the fluid motion and heat transfer 
rates in mixed convection, mixing induced by the pres- 
ence of unsteady finite amphtude disturbances must 
be accounted for. It is the purpose of this paper to 
analyze the non-linear growth of these instabilities 
and their subsequent effect on the heat transfer. 

The increase in heat transfer rates induced by 
hydrodynamic instability has been observed exper- 
imentally. For example, Scheele and Hanratty [S] 

observed that flow in a heated vertical tube is unstable. 
When the buoyancy forces opposed the motion of the 
fluid, such as in upward flow in a cooled pipe, the 
transition to turbulence was abrupt. However, when 
the buoyancy forces aided the motion of the fluid, 
such as upward flow in a heated pipe, the transition 
to turbulence was gradual, and the initial transition 
resulted in a new periodic non-parallel laminar equi- 
librium ilow. Thus, when the buoyancy forces are 
opposing the motion the instability is subcriricaf, and 
the initial flow bifurcations lead to turbulence rela- 
tively fast (in a convective time scale). In the aided 
flow case, however, the instability is supercriricul, and 
the flow will pass through a series of equilibrium states 
before the transition to turbulence. The turbulence 
structure for such a ffow is likely different than that for 
an isothermal flow. Flow patterns for the supercritical 
case in a vertical pipe were also observed by Kemeny 
and Somers [6] and called ‘nonlaminar’ to distinguish 
them from fully turbulent flow. Heat transfer rates 
were found to be as much as 30% higher then those 
observed in laminar flow, and the effect was observed 
at Reynolds numbers as small as 30. Supercritical 
instabilities have also been observed for heated flow 
in a vertical concentric annulus by Maitra and Raju 
[7]. In their experiment, an annulus with an inner 
radius to gap ratio of 0.6 was used with the inner 
cylinder providing a constant heat ffux and the outer 
cylinder insulated. When the measured heat transfer 
rates were compared with those predicted by a model 
which utilized the parallel flow assumption, it was 
found that the observed heat transfer rates were, on 
average, 45% higher than predicted. In this paper, we 
model an annulus such as was used by Maitra and 
Raju so that the results can be directly compared with 
their experimental data. 

Since the disturbance amplitudes are small near the 
linear stability boundary, weakly non-linear stability 
theory can be applied to determine the flow patterns. 
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NOMENCLATURE 

curvature parameter, b/(a-6) 

radius of outer cylinder 
radius of inner cylinder 
complex disturbance wave speed, c, + iq 
disturbance kinetic energy from radial 
velocity 
disturbance kinetic energy from axial 
velocity 
disturbance thermal energy 
convective heat transfer coefficient 
fluid thermal conductivity 
Nusselt number, h(a-b)/k 

azimuthal disturbance wave number 
mean flow pressure 
disturbance pressure 
Prandtl number, v/E 
Rayleigh number, /3gp(a - b)4/fiv 

Reynolds number, W,,(a-b)/v 
dimensional radial distance 
upstream reference temperature 
annulus inner wall temperature 
time 
time scale for wave propagation 
radial velocity 
azimuthal velocity 
axial velocity 
radial disturbance velocity 
azimuthal disturbance velocity 

ti 
W 

W _(I”4 

W 

WO 
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axial disturbance velocity 
mean flow axial velocity 
average mean flow axial velocity 
mean flow axial velocity distortion 
function 
basic-state axial velocity 
axial coordinate. 

Greek symbols 
axial disturbance wave number 
thermal diffusivity 
coefficient of thermal expansion 
amplitude of velocity disturbance 
amplitude of pressure disturbance 
amplitude of temperature disturbance 
integrals in disturbance energy balances 
dimensionless radial coordinate, 

(r-W@-@ 
mean flow temperature distribution 
mean flow temperature distortion function 
basic-state temperature distribution 
dimensionless temperature 
disturbance temperature 
axial wall temperature gradient 
kinematic viscosity 
time scale for disturbance growth 
azimuthal coordinate. 

1 

Stuart [8] modeled the growth of disturbances in 
plane-Poiseuille flow by using an integral energy 
approach and assuming that the disturbance retained 
its initial shape predicted by linear theory. This 
approach is often referred to as ‘Stuart’s shape 
assumption’. This method does not consider the gen- 
eration of higher harmonics of the fundamental mode 
or the distortion of the shape of the original eigen- 
vector, and is hence approximate [9, lo]. However, 
since the effect of the distortion of the disturbance is 
expected to be small near the neutral curve Stuart’s 
shape assumption provides a means to determine the 
heat transfer rate due to extra mixing induced by 
instabilities and shed light on many important physi- 
cal processes such as disturbance growth and energy 
distribution patterns. 

In the modeling of the disturbance using the shape 
assumption, the question of the flow being sub- 
critically or supercritically unstable becomes impor- 
tant. If the flow is subcritically unstable, under all but 
the most careful experimental conditions the flow will 
likely become unstable to finite amplitude dis- 
turbances before the linear stability boundary is 
reached, and any prediction of the structure of the 
flow based on the growth of the most unstable linear 
disturbance will probably be very much in error. How- 

ever, if the instability is supercritical, the initial growth 
of the disturbance may be more accurately modeled 
by following the evolution of the linear mode than 
would be the case with the subcritical instability. The 
shape assumption utilized in this paper does not pro- 
vide conclusive information about the nature of the 
instability. Thus, we will restrict our attention to flows 
which have been experimentally observed to be super- 
critically unstable, such as is the case in the work of 
Maitra and Raju. 

The analysis proceeds as follows. First, a linear 
stability analysis is carried out to determine the stab- 
ility boundary for infinitesimal disturbances and the 
normalized eigenfunctions of these unstable modes. 
These results are then used to model the shape of 
the distortion of the original velocity and tempera- 
ture profiles due to Reynolds stresses and heat flux 
caused by the disturbances. At this point, the ampli- 
tude of the disturbances is not known. An integral 
energy balance is used to determine the equilib- 
rium amplitudes that the disturbances will attain. 
The result from this analysis is used to find the distor- 
ted temperature and velocity profiles. Analysis of 
the modification of the heat transfer rates due to mix- 
ing induced by the unsteady flow follows from this 
result. 
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FIG. I. Geometry and coordinates. 

2. ANALWS 

We are considering the motion of a heated fluid in 
a vertical concentric cylindrical annuius, the geometry 
of which is iltustrated in Fig. 1. A constant heat flux 
is supplied at the inner waI1 and the outer wail is 
adiabatic. The Navier-Stokes and energy equations 
for incompressible flow written in terms of annular- 
cylindrical coordinates (r, tl, z) become 

au 
-$ fD,u- U’~_?c,L 

rl+A dq Re 

where 

B d+_- va a 
tmUaq tf+~a~+“i% CW 

and 

In the above equations a curvature parameter of 
the annulus has been defined by A = b/(a- f~) where 
a and b are, respectively, the outer and inner radii 
of the concentric cylinders. The dimensionless radial 
variable is given by q = {r-@/(a-b). Ali lengths 
have been made dimensionless by the gap width of 
the annuius, a-b, the velocities by the mean axial 
velocity, W,,,, the pressure by p Wi, and the time 

by (a-b)/W,,. The temperature of the inner wall is 
assumed to increase linearly with z as follows: 

T, = T,+p(ff--b)z. 

A non-dimensional temperature is defined as 

6 = (Tw - 7)(p(a-b)Re Pr). 

fn these equations, r, is the upstream reference tem- 
perature, T, the watt temperature and p the constant 
axial temperature gradient. The parameters in the 
problem are the Reynolds number Re = W&a- b)/v, 
Prandtl number Pr = v/S, and the Rayleigh number 
Re = ,!?gp(lr- b)4/Oiv, where a7 is the coefficient of ther- 
mal diffusivity, /? the thermal expansion coe%icient, v 
the kinematic viscosity and 9 the acceleration due to 
gravity. 

We are studying the state of the fluid motion after 
the onset of hydrodynamic instability, when the dis- 
turbances have grown to a small but finite size. Thus, 
we separate the flow field into a mean Aow and a 
disturbance (with zero mean) 

w = Wflr, 0 + g;crt, #, z, t) (3a) 

u = ri(rl, 6 z, 1) (3bI 

u = %I. #, z, 0 (3c) 

@ = @Crtz ts+ &rt, 4& 23 0 (3d) 

P = P(z, t)+ li(rt* #% z, I). (3e) 

The mean flow equations are obtained by sub- 
stituting these forms into the governing equations and 
averaging. The disturbance parameters are assumed 
to be represented by Fourier components in the axial 
and azimuthal directions and are modeled as follows : 

$ I C $,(q, 5) ei(r(r-ef2@) +c.c. 
m 

(4) 

IR equation (41, $ is the disturbance quantity, Q. the 
axial wave number, n the integer azimuthal wave num- 
ber, c the complex disturbance wave speed and CC. 
stands for complex conjugate. Disturbances at a par- 
ticular set of wave numbers will be initially amplified 
when the complex portion of the wave speed becomes 
positive. In this form two time scales are distinguished. 
The first time scafe describes the propagation of the 
disturbance wave, and is given the symbol t, while 
the second represents the non-linear growth of the 
disturbance, and is given the symbol T. Assuming 
disturbances of this nature and averaging over one 
wavelength with respect to axial and azimuthal c~or- 
dinates, the mean-motion equations become 
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Even though the disturbance flow patterns that we 
are studying in this paper are periodic and highly 
structured,?e refer to li,;l as the averaged Reynolds 
stress and t;6 as the averaged heat flux correlation. 

The mean flow equations are subject to the no-slip 
boundary conditions on each wall, a constant heat 
flux applied at the inner wall and an insulated outer 
wall. With our scaling, the boundary conditions 
become 

W(0) = W( 1) = O(0) = O’( 1) = 0. (6) 

Subtracting the mean flow equations (5) from the 
governing equations (I) we arrive at the relations 
describing the disturbance 

1 1 

1”+ I dti diC 
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00 

In these equations D, differs slightly from the form 
given by equation (2a) in that the velocities are dis- 
turbance velocities. Because of these convective terms, 
the equations are nonlinear in the disturbance par- 
ameters. 

3. THE LINEAR STABILITY SOLUTION 

The solution of the linear stability problem for 
mixed convection is described in detail in refs. [l-4]. 
Briefly, the procedure goes as follows. The basic-state 
velocity and temperature profiles are found by 
assuming the flow is steady, laminar, fully developed 
and parallel. Results for the basic-state calculation for 
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FIG. 2. Basic-state velocity and temperature profiles for 
A = 0.6. 

a curvature parameter of 0.6 are shown in Fig. 2. The 
linear stability equations are obtained from equations 
(7) by neglecting the small non-linear terms. The 
resulting set of partial differential equations are con- 
verted to ordinary differential equations by the 
assumption of the normal mode form for the dis- 
turbances, as given by equation (4), with only the first 
harmonic term in the series being considered. The 
resulting set of five linear equations is then reduced to 
three through the elimination of the pressure terms by 
cross-differentiation, and the choice of appropriate 
streamfunctions to satisfy the continuity equation, 
The ensuing equations, along with the no-slip bound- 
ary conditions for each disturbance quantity applied 
at the walls, form a complex eigenvalue problem for 
the disturbance wave speed, c, with the disturbance 
being unstable for c, > 0. Thus, at a given Pr, the 
stability boundary is determined to be that locus of 
points in the (Ra, Re, a, n) space where c, = 0. These 
points are found by a numerical search. The numerical 
techniques used in the analysis are described in detail 
in refs. [l-4]. 

The instability boundary for A = 0.6 and Pr = 6 in 
the (Ra, Re) plane is shown in Fig. 3. The result indi- 
cates that at Re > 100 the instability boundary is a 
very weak function of Re and the flow becomes 
unstable to a thermal instability at about Ra = 89. At 
Re c 50, the inertial forces are minimal and the criti- 
cal Ra increases. The azimuthal wave number for this 
instability is n = 0, hence the most unstable dis- 
turbance is axisymmetric. This curve is similar in 
shape to that presented in ref. [l] for upward flow in 
a heated vertical pipe, and reaffirms the assertion that 
mixed convection flows become unstable even at quite 
small heating rates with rather minimal distortion of 
the velocity profile. For example, in this geometry a 
point of inflection does not appear in the basic-state 
velocity profile until Ru = 96, which is already in the 
unstable region (see Fig. 2). The range of data pre- 
sented by Maitra and Raju occurs between Re of 
about 150 and 500 and at Ru between about 200 and 
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FIG. 3. Linear stability boundary and axial wave number vs Ru for Pr = 6 and A c 0.6. 

10000. Thus, their experimental data were taken well 
into the unstable region and the observed increase in 
heat transfer rates is not surprising. 

4. THE FINlYE-AMPLITUDE SOLUTION 

4. I. Meanflow 

A shear instability occurs when isothermal flow in 
the annulus becomes unstable to a non-axisymmet~c 
disturbance, withan a~muthai wave numberofn = I, 
at a Reynofds number of about 14000, in agreement 
with ref. [I I]. With small amounts of heat addition we 
find that this instability is stabilized, and the shape of 
the stability boundary becomes almost parallel to the 
horizontal axis at a Rayleigh number of about 8. 
The stable region then consists of a region below 
the thermal instability, which occurs at a Rayleigh 
number of about 89, and above the shear instability, 
which is unstable below Rayleigh numbers of about 8. 
A search to Re = 50 000 was unsuccessful in locating 
additional instabilities which would bridge this gap. 
The thermal and shear instability curves are not quite 
horizontaf, however, and extrapolation of these 
curves indicates that they may intersect at large 
Reynolds numbers. This behavior is similar to that 
reported in refs. [3,4], but in those cases an interactive 
instability was found which bridged the gap from 
the thermal to shear instabilities. It is known that 
isothermal channel flows become unstable to finite 
amplitude disturbances at Reynolds numbers of a few 
thousand. Thus, the shear instabihty found here will 
be of the subcritical type. 

Through the action of the Reynolds stress and heat 
fiux terms, the mean flow, given by equations t j), will 
begin to differ from the basic state as the disturbance 
grows. In the case of a supercritical instability. such 
as has been observed in this situation, the disturbance 
will grow until it reaches an equilibrium amplitude. 
Since we are interested in finding this amplitude, we 
obtain the equilibrium solution to the mean flow equa- 
tions by setting the time derivatives to zero. This is 
analogous to the ‘method of false problems’ described 
by Reynolds and Potter (121. In addition. we will 
impose the requirement that the mean mass-flow rate 
through the channel remain constant. Thus. the pres- 
sure gradient driving the ffow must be adjusted to 
account for the variation in wall shear stress as the 
disturbance distorts the mean motion. 

In general, we must allow separate amplitudes for 
the velocity and thermal disturbances. Investigation 
of the mean flow equations reveals the Reynolds stress 
and heat flux terms are of the order of amplitude 
squared, and we thus expect the disto~ion of the basic 
state to also be of this order. Thus, we model the mean 
flow as the basic state plus a distortion of the basic 
state as follows : 

A plot of axial wave number vs Re for the thermal 
instability is also given on Fig. 3, and illustrates that 
the wave number, u, decreases with increasing Re. As 
Re doubles (corresponding to a doubling of the mean 
axial velocity), c( decreases by about half. This 
indicates a lengthening of the disturbance with 
increasing mean flow. 

w= w,+l-,“iv 

0 = o,+r,r,b 

where Pk and r, are the amplitudes of the velocity and 
temperature disturbances, respectively, W0 and Go 
the basic state, and @and d represent the distortion 
of the mean flow from the basic state. 

It is found that, in this case, the therma disturbance The equations for the mean distortion quantities 
wave speed, c,. is almost constant with Re at a non- which result at the order of the amphtude squared are 
dimensional value of I .65. This speed is slightly slower solved using the results from the linear analysis to 
than the maximum axial velocity, but faster than the model the Reynolds stress and heat flux terms. Since 
mean velocity. Thus, there will be two critical layers the amplitudes are initially unknown and the ratio of 
in the velocity profile. At Ra = 89 these occur at about the amplitudes will appear in the mean flow distortion 
q = 0.23 and 0.41. equations, the system must be solved in an iterative 
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fashion simultaneously with the solution for the 
amplitudes. 

The results from the linear stability calculation for 
the situation being considered in this study shows that 
the most unstable disturbance is axisymmetric. Thus, 
the azimuthal disturbance velocity is zero and the 
azimuthal momentum equation is not necessary. If we 
multiply each disturbance equation by its primary 
variable and integrate over one wavelength of the 
disturbance we obtain, for the axisymmetric case, the 
following integral relations for the conservation of 
kinetic and thermal energy : 

(9b) 

where E, is the kinetic energy from the axial com- 
ponent of the disturbance velocity contained within 
the disturbance volume, E. the kinetic energy from 
the radial disturbance velocity and E, is identified as 
a total disturbance thermal energy within the volume. 
The term ‘thermal energy’ is used in this case to 
describe the integral over the volume of the dis- 
turbance temperature squared. The expressions for 
the y’s are 

= I-J-, J ’ *ix 
YW” o f’-&rl+ddtt (lOa). 

where the term I’, in equations (lOa) and (IOf) rep- 
resents the amplitude of the pressure disturbance, and 
the overbars in equations (IO) mean that the quantities 
have been averaged over the wavelength of a dis- 
turbance. The disturbance quantities in these integrals 
represent the 0( 1) result from the linear stability prob- 
lem multiplied by the appropriate disturbance ampli- 
tude. If we consider the equilibrium solution, the time- 
dependent terms on the left-hand side of equations 
(9) go to zero, and we are left with steady-state energy 
balances for the thermal and kinetic disturbance 
energies. 

The pressure scrambling term in equation (9a), y*,“, 
represents the redistribution of disturbance kinetic 
energy from the axial velocity component to the radial 
velocity component. Since there is no mean Aow in the 
radial direction there is no direct radial disturbance 
energy production and this term will be the only 
source of radial kinetic energy. Its value will be nega- 
tive since the radial kinetic energy is gained at the 
expense of the axial kinetic energy. The second term 
in this equation, y_,i, represents the production of the 
axial disturbance kinetic energy by the action of the 
Reynolds stress and mean flow strain. and is positive. 
The third term, yWP2, represents the modification of 
the axial kinetic energy production due to the dis- 
tortion of the mean flow, and is negative. The fourth 
term, y,+ represents the exchange between the thermal 
disturbance energy and the axial disturbance kinetic 
energy through the buoyant force. The last term, yWrtr 
represents the dissipation of the axial disturbance 
kinetic energy through viscous action, and is always 
negative. The first term in equation (9b), yWW, rep- 
resents the transfer of disturbance kinetic energy 
between the axial and radial components of the dis- 
turbance kinetic energy. This term will be equal in 
magnitude, but opposite in sign to ytiu. The other 
term in equation (9b), yuJ, accounts for the viscous 
dissipation of radial disturbance kinetic energy. The 
first term in equation (SC), ‘J@~~, represents the pro- 
duction of disturbance thermal energy from the mean 
temperature gradient, and is positive. The second 
term, ye+ represents a correction to ‘/BPl due to the 
distortion of the mean temperature gradient, and is 
negative. The third term in this equation, yew, rep- 
resents the transfer of disturbance thermal energy to 
axiaI disturbance kinetic energy through the buoyant 
force. The last term in this equation, ye,,, represents the 
thermal disturbance energy dissipated by conduction, 
and is negative. The thermal/kinetic energy exchange 
terms in equations (9a) and (9c) represents a re- 
distribution of the disturbance energy between the 
thermal and kinetic energy components of the total 
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disturbance energy. This interaction represents the 
key energy transfer mechanism in mixed-convection 
instability. 

The terms in the energy balances given by equations 
(9) describe the energy transfer patterns between the 
mean motion and the disturbance, as well as among 
the various disturbance energy components. The total 
disturbance energy is produced by the mean tem- 
perature gradient, which produces the thermal energy, 
and by the Reynolds stress/mean flow strain inter- 
action which produces axiaf disturbance kinetic 
energy. Another source of axial kinetic energy is the 
exchange of disturbance energy from the thermal to 
kinetic energy components of the total disturbance 
energy through the buoyant force, These kinetic 
energy production terms are in competition with the 
dissipation and energy redistribution terms in the 
axial momentum equation. Some of the axiaf dis- 
turbance kinetic energy will be dissipated by the axial 
viscous dissipation term. Additional energy will be 
transferred from the axial to radial components of 
the kinetic energy through the disturbance pressure 
fluctuations, where it is dissipated by viscous action 
in the radiaf direction. The thermal disturbance energy 
that is not transferred to the disturbance kinetic 
energy through the bouyant force will be dissipated 
by conduction. When production and dissipation 
rates are equivalent, a steady state will result. 

The dete~ination of the amplitudes from equa- 
tions (9) and (to) is st~ight~o~ard” Briefly, the pro- 
cedure is as Follows. First, by combining equations 
(9a) and (9b), the pressure is eliminated from the 
integral energy balances. This results in a set of two 
equations, the first being a balance of’ the total dis- 
turbance kinetic energy and the second being the 
thermat energy balance. The integrals in these energy 
bafances are evaIuated using results from the solution 
af the linear stability problem. The resulting equations 
then represent an easily solved system of two equa- 
tions For the two unknown amplitudes, Fr and T,. 
As mentioned earlier, however, the solution for the 
amplitudes wilt require an iterative procedure since 
the ampf~tude ratio appears in the mean ilow dis- 
tortion equations. After the determination of the 
kinetic energy and thermal disturbance amplitudes, 
the pressure disturbance amplitude is easily found 
from equation (9b). 

The linear stability results show that the critical Ra 
is only a very weak function of Re. The velocity and 
temperature profiles for the basic state are functions 
of &?a only, hence the disturbance initiatfy perturbs 
velocity and temperature profiles which are very 
similar throughout the range of Re considered. The 
amplitudes or the disturbances are determined from 
the energy balances given by equations (9). From 
equations (9a) and (foe), we see that an increase in 
Re will lead to a decrease in the viscous dissipation 
term. However, the the~ai~kinetic energy exchange 

Ra 

FIG, 4. Disturbance amplitudes for velocity and 
perature disturbances: pt. velocity disturbance; T,, 

perature disturbance. 

85 

tem- 

term afso includes Re in the de~~rni~at~r, and hence 
will decrease by a proportional amount. In addition, 
in this particular case a doubling of Re leads to a 
doubling of the critical disturbance wavelength, and 
the radial velocity will decrease in an amount pro- 
portional to the increase in Re. Hence, the ampfitude 
of this disturbance at a given Ra is dependent o&y on 
the mean velocity and temperature profifes and the 
critical Ru. Since these quantities are not strong func- 
tions of Re, our model predicts almost no dependence 
on the Reynolds number, and our results will be pre- 
sented at a singfe value of Re. It should be understood, 
however, that this behavior is due to the nature of the 
instability, and is not expected to be the general case 
for all curvature parameters and Prandtf numbers. 

Figure 4 illustrates the kinetic and thermal energy 
amplitudes as functions of Ra for Re = 250. The 
magnitudes of the amplitudes shown in this figure are 
referenced to the magnitude of the eigenrnodes for 
the disturbance velocities and temperatures and hence 
depend on the normalization used for these vectors. 
In this paper, the fallowing normalizations were used : 

velocities : 

temperature: 6,’ = i 

From Fig. 4 we see that the momentum disturbance 
amplitude increases continuously with increasing Ra, 
The thermaf disturbance amplitude, however, 
increases to a maximum value at about Ra = 150, 
then begins to decrease. This occurs for two reasons. 
First, disturbance thermal energy is being converted 
to kinetic energy through the disturbance energy ex- 
change mechanism discussed earlier. Second, the pro- 
duction of thermal disturbance energy through the 
Reynolds heat flux term is decreasing in magnitude. 
This is because the mean temperature profile is flat- 
tening out due to the presence of the disturbance, and 
hence the mean temperature gradient, which drives 
the production of the thermal disturbance energy, is 
decreasing. 
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FIG. 5. Distorted mean velocity and temperature profiles. 

Plots of the distorted mean velocity and tem- 
perature profiles for Re = 250 and several Ra are 
shown in Fig. 5. This figure illustrates that the velocity 
profile is enhanced near the inner wall and slightly 
retarded near the outer wall as Ra increases. This 
occurs because the buoyant force in the mean flow 
equations acts in the axial direction and tends to 
increase the flow rate. This effect is greatest near the 
heated inner wall and least near the insulated outer 
wall. Because of the requirement of mass conser- 
vation, the velocity near the outer wall must decrease 
to make up for the increase near the inner wall. This 
effect is similar to that obtained from the parallel 
flow assumption, but comparison of Figs. 2 and 5 
illustrates that the cross stream exchange of momen- 
tum due to the disturbance minimizes this effect for 
the distorted flow. 

The distorted mean temperature profiles shown on 
Fig. 5 clearly illustrate the enhancement in heat trans- 
fer due to the presence of the disturbance. We see 
that the temperature difference between the inner and 
outer walls decreases significantly as Ra increases. 
Comparison of these results with those obtained from 
the parallel flow assumption, as shown in Fig. 2, shows 
that this decrease is a great deal larger due to the 
presence of the disturbance. The temperature gradient 
at the inner wall is not affected significantly. Thus, the 
same amount of heat is being transferred into the duct 
with a much smaller difference between the inner wall 
temperature and the fluid mixed-mean temperature. 

4.4. Energetics 
An explanation of many of the phenomena 

observed in these results requires a more detailed 
study of the energy balances. Figures 6 and 7 are 
plots of the integrands in equations (9) vs the radial 
coordinate at Re = 250 and Ra = 150. The results on 
Fig. 6 are for the total kinetic energy balance, involv- 
ing both radial and axial velocities, while those on 
Fig. 7 refer to the thermal energy balance. We see 
from Fig. 6 that the kinetic energy production term, 
y”,,,, is positive. It is dominated, however, by the 
production of kinetic energy through exchange of dis- 
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FIG. 6. Integrands in disturbance kinetic energy balance at 
Ra = 150. 

turbance energy with the thermal component of the 
total disturbance energy. Both production terms reach 
their maximum values near the outer critical layer at 
q = 0.41. However, the energy exchange term, yve, 
reaches a maximum amplitude approximately four 
times as large as the shear production term, yvP, . The 
mean flow distortion term, ywPz, is negative and also 
reaches its minimum value near the outer critical layer. 
The viscous dissipation term, ywd+ ylul, is negative, as 
expected. The plot of this term reveals that the viscous 
dissipation is largest near the outer critical layer, and 
also has maxima in the regions of high shear rates. 

In Fig. 7, we see that the production of disturbance 
thermal energy through the Reynolds heat flux term, 
yePI, is positive throughout the domain and reaches 
its maximum value near the outer critical layer. The 
mean temperature distortion term, yop2, is negative 
throughout most of the domain. The energy exchange 
term, given by yBw, is negative as expected. Its magni- 
tude, however, is a great deal smaller than the mag- 
nitude of the other terms in the thermal energy 
balance. Thus, although it is the dominant term in the 
kinetic energy balance, it does not significantly reduce 

FIG. 7. Integrands in disturbance thermal energy balance at 
Ra = 150. 
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FIG. 8. Integrals in disturbance kinetic energy balance vs Ra. 

the production of thermal energy. The dissipation of 
thermal energy due to conduction, given by ysr, is seen 
to be negative throughout the domain. Ah of the 
terms shown on this plot become very small by about 
q = 0.6. Thus, the temperature profiles will not be 
affected by the disturbance near the outer wall, but 
the profiles will be modified significantly in the regions 
near the critical layer. This is illustrated in Fig. 5, 
which shows the mean distorted temperature profiles 
as discussed earlier. In this figure we see that the 
profiles are quite different near the channel center, but 
become similar at the walls. 

The values of the terms in the energy balances, 
equations (9), are plotted vs Ra, at Re = 250, in Figs. 
8 and 9 for the total kinetic and thermal energy respec- 
tively. In Fig. 8 we see that the thermal/kinetic energy 
exchange term, Y.~, is the dominant kinetic energy 
production term throughout the range of Ra inves- 
tigated. However, as Ra increases, the relative impor- 
tance of the shear flow production term, ywP,, increases. 
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FIG. 9. Integrals in disturbance thermal energy balance vs 
Ra. 

This is a consequence of the shape assumption, 
and occurs because the energy exchange term, yng, 
increases linearly with Ra and is multiplied by the 
amplitude of the thermal disturbance, f,, and the 
amplitude of the kinetic energy disturbance, Tt. The 
shear flow production term, however, is multiplied by 
r:. Since the amplitude of the thermal disturbance 
begins to decrease after about Ra = 150, the rate of 
increase of the energy exchange term with increasing 
Ra will be smaller beyond this point. The kinetic 
energy amplitude continues to increase, however, and 
hence this term begins to increase faster with increas- 
ing Ra. Figure 8 also illustrates that the mean flow 
distortion term, ywPp2, decreases with increasing Ra, 
as does the viscous dissipation term, ~~,~d+~~~, thus 
balancing the production terms. The mean flow dis- 
tortion term is close to a mirror image of the shear flow 
production term and the viscous dissipation closely 
mirrors the energy exchange term. 

Figure 9 illustrates the magnitudes of the terms in 
the thermal energy balance as Ra increases. We see 
from this figure that the thermal energy production 
term, yeP,, initially increases with increasing Ra, but 
begins to decrease at Rayleigh numbers larger than 
about 250. As discussed earlier, this is due to the fact 
that the temperature profile is flattening out, hence 
the driving gradient in the thermal energy production 
term is decreasing. We also see that the energy ex- 
change term, yBw, is negative, indicating that thermal 
energy is being converted into kinetic energy as 
observed earlier. In this case, however, we see that the 
magnitude of this term is small in comparison to the 
magnitude of the other terms in the thermal energy 
balance. Thus, the reduction in the amplitude of the 
thermal disturbance is due primarily to the reduction 
in the production term. Figure 9 also illustrates that 
the thermal energy dissipation due to conduction 
initially increases, but then begins to decrease as 
the amplitude of the thermal energy disturbance 
decreases. This, again, is a consequence of the shape 
assumption model for the disturbance. Since the shape 
of the disturbance is assumed to not change, the 
energy dissipation integral will remain constant with 
changing Ra. This integral is multiplied by the square 
of the thermal energy disturbance amplitude and, if 
the amplitude decreases, the dissipation will likewise 
decrease. The magnitude of the mean temperature 
distortion term, yBpz, increases with increasing Ra. As 
the magnitude of the dissipation decreases at larger 
Ra, we see that it becomes a dominant term. Thus we 
notice rather large distortions of the mean tem- 
perature profile at higher Ra, as seen in Fig. 5. 

4.5. Disturbance shape 
A plot of the periodic temperature disturbance in 

convective coordinates is given in Fig. 10. This figure 
illustrates that the temperature profile will be per- 
turbed the greatest amount in the region of the outer 
critical layer, and the value of the disturbance becomes 
very small by about q = 0.8. This is reflected in Fig. 
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Fw. IO. Temperature disturbance in convective coordinates 
(Z = a(:-cr)). 
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Il. Disturbance streamlines in convective coordinates 
(2 = a(r-et)). 

5, which shows the temperature wave has very little 
effect on the mean temperature profile near the outer 
wall, but in the region around the critical layer the 
shape of the profile differs a great deal from that 
predicted by the parallel Bow assumption. 

Figure 11 is a plot of the vefocity disturbance 
streamlines in convective coordinates. The figure illus- 
trates that the disturbance will consist of a set of 
counter-rotating cells, tilted slightly upward toward 
the outer wall. The verticaI axis on this plot is the 
convective coordinate, 2 = a@-cr), and is not to 
scale. The critical axial wave number, tc, at & = 250 
is 0.26, corresponding to a disturbance wavelength 
that is about 25 times the annular gap-width. Hence, 
the disturbance radial velocities, as well as the ampli- 
tudes of the pressure fluctuations, will be quite small 
in comparison to the axia1 disturbance velocities. 

5. HEAT TRANSFER AND FRICTION 

COEFFICIENT 

The effect of the distortion of the mean velocity 
:md temperature profiles on the heat transfer rate is 
>tudied by defining a Nusselt modulus as follows : 

h(a-b) 
M.l=~. 

In this equation, h is the convective heat transfer 
coefficient based on the temperature difference between 
the inner wall of the annulus and the fluid mix~-mead 
temperature, and k the thermal conductivity of the 
tluid. This Nusselt number can also be written as 

After the distorted mean velocity and temperature 
profiles have been determined, the Nusselt number is 
found from equation (I I). Results of this calculation, 
as well as rest&s from the parallel Bow assumption, 
for Re = 250 are illustrated in Fig. 12. The range of 
experimental data from Maitra and Raju is 
also illustrated on this plot. This figure clearly 
demonstrates that mixing increases heat transfer rates 
above those predicted by the parallel flow assumption 
At Ra = 100, the increase in Nu is found tu be about 
5%, and at Ra = 200, this has increased to 20%. The 
data presented by Maitra and Raju starts at Ra of 
about 200, as illustrated in the figure. At this Ra, our 
result is near the center of the experimental data. 
However, as Ra increases our predictions fall out of 
the range of data. This is not surprising, however, 
since this analysis can be expected to be more accurate 
near the neutral curve. At larger values of Ra the fluid 
will undergo subsequent bifurcations which will lead 
to stronger mixing, and this increased mixing will 
cause the observed increase in NU to be larger than 
predicted. An analysis of these effects at larger values 
of i&z will likely require a solution of the fully non- 
linear governing equations. However, these results 
clearly demonstrate that the observed increase in h;u 
is due to the presence of hydrodynamic instabilities 
and any attempt to model the heat transfer rates in 
mixed convection which does not account for the pres- 
ence of these disturbances will be very much in error. 

In the region between the linear stability limit and 
Ru = 600, our analytical result for the Nusselt number 
of the distorted flow, as shown on Fig. 12, is described 
closely by the following relation between Ra and NU : 

Nu = 1.02 (Ra)*.“. 03 

As mentioned previously, the dependence of the 
distorted velocity and temperature on Re is found to 
be minimal. Thus, since the Nusselt number is 
obtained from these profiles, it will also not have a 
strong dependence on Re. It can be expected that the 
flow in an annulus will become fully turbulent due to 
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FIG. 12. Nusselt number and wall shear stress vs Rayleigh 
number at I?e = 250. The subscript ‘bs’stands for basic state, 

while the subscript ‘df’ stands for distorted flow. 

a subcritical shear instability at a Reynolds number 
of a few thousand. Hence, the correlation given by 
equation (12) can be expected to provide results simi- 
lar to those shown in Fig. 12 throughout the range 
of Re which provide laminar isothermal flow in an 
annulus of this curvature parameter. 

The dimensionless shear stress, or friction 
coefficient, at each wall is also plotted in Fig. 12 for 
both the disturbed flow and the basic state. Since the 
disturbance flattens out the velocity profile we see that 
the magnitude of the shear stress on the inner wall 
increases much slower in the disturbed flow than is 
predicted by the parallel flow assumption. At an Ra 

of about 350, the shear stress on the outer wall pre- 
dicted by the basic state goes to zero, corresponding 
to ‘flow reversal’. This figure clearly illustrates that 
this event will not occur, since the shear stress does 
not go to zero for the disturbed flow. In addition, at 
higher values of Ra the flow will undergo subsequent 
bifurcations which will increase the value of the outer 
wall shear stress beyond that predicted by this analysis. 

6. CONCLUSIONS 

The marginal stability boundary from linear theory 
has been determined for mixed convection ffow up a 
vertical annulus with an inner radius to gap ratio of 
0.6, a constant heat flux applied to the inner cylinder, 
the outer cylinder being insulated. These results com- 
pliment those obtained in earlier studies [l-4], and 
reaffirm the observation that mixed convection flows 
in ducts are unstable over a very large portion of the 
parameter domain. These instabilities occur at heating 
rates a great deal smaller than those necessary to 
produce ‘reverse flow’ regions predicted by models 
utilizing the parallel flow assumption. 

The effect of non-linear disturbance growth is 
modeled by obtaining estimates for disturbance 
amplitudes with the aid of disturbance energy bal- 
ances and Stuart’s shape assumption. Study of the 

energy balances for the thermal and kinetic dis- 
turbance energies shows that the primary source of 
production of disturbance kinetic energy is not 
through direct production from the shear flow, but 
rather through exchange of energy with the thermal 
disturbance. While this energy exchange is a dominant 
term in the kinetic energy balance, its effect on the 
production of thermal disturbance energy is small. 

The results obtained from this analysis predict Nus- 
selt numbers that fall within the range of experimental 
data for Rayleigh numbers that are not much larger 
than the critical Rayleigh number. This clearly indi- 
cates that the observed increases in heat transfer rates 
beyond those predicted by parallel flow analyses can 
be attributed to the presence of hydrodynamic insta- 
bilities. Consequently, efforts to accurately model the 
velocity and temperature fields must consider the pres- 
ence of mixing induced by these disturbances. Heat 
transfer correlations developed from analytical 
models which utilize the parallel flow assumption will 
be valid only at very low heat addition rates and 
must therefore be used with extreme caution. Accurate 
modeling of these phenomena at Ra a large distance 
from the neutral curve will probably require a solution 
of the fully non-linear governing equations. 
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EFFET SUR LE TRANSFERT THERMIQUE DE L’INSTABILITE DE LA CONVECTION 
MIXTE DANS UN ESPACE ANNULAIRE VERTICAL 

R&urn&On Ctudie la stabilite hydrodynamique de la convection mixte dans un espace annulaire. La limite 
de la stabilite lineaire est determin&e pour un ecoulement ascendant dans un espace annulaire vertical avec 
application dun flux thetmique uniforme sur la paroi interne et isolation a l’exterieur. Le resultat indique 
que I’ecoulement pleinement etabli est thermiquement instable dans plusieurs r&ions dun espace para- 
metrique approprit. Les valeurs des perturbations d’amplitude finie dans la region instable sont determinees 
en utilisant l’hypothbse de forme de Stuart. On obtient des profils distordus d’boulement moyen et les 
accroissements des transferts thermiques d&s a ces perturbations, calculb ri partir des resultat% s’accordent 

bien avec les don&s experimentales. 

DER EINFLUSS VON GEMISCHTER KONVEKTION AUF DEN WARMEUBERGANG 
IN EINEM VERTIKALEN RING 

Zusammenfassung-Die hydrodynamische Stabilitiit bei Mischkonvektion in einem Ringspalt wird unter- 
sucht. Es wird die laminare Stabilitatsgrenze Blr eine erzwungene Aufwiirtsstromung in einem vertikalen 
Ringspalt bestimmt, dessen innere Wand einem konstanten Wiirmestrom ausgesetzt und dessert iiuBere 
Wand isoliert ist. Das Ergebnis zeigt, daB die voll entwickelte Strcimung in den meisten Gebieten eines 
entsprechenden Parameterraumes therm&h instabil ist. Die GrciBe der Striirungen endlicher Amplitude 
in den instabilen Regionen werden iiber die Stuart’sche Formannahme bestimmt. Daraus ergeben sich 
gestiirte mittlere DurchfluBprofile. Der hierdurch hervorgerufene Anstieg des Wlrmeilberganp wird aus 

den Ergebnissen berechnet und stimmt gut mit den experimentell ermittelten Daten iiberein. 

BJIHIIHHE HEYCTO@IHBOCTH IIPH CMEIIIAHHOtl KOHBEKHMM HA 
TEIIJIOITEPEHOC B BEPTHKAJIbHO PACTIOJIOXEHHOM KOJIbHEBOM 3A3OPE 

~Mccaenyerca w3po~a~uecKan ycrohfsocra cr4euaimoL ro~ne~qmi II KojThueBobi 
3a3ope. Onpeneneiia rpamiua mmellaofi ycroPr~eocrbi aocxon5nuero sbmywtemforo Teqewn B eepTii- 
KiJlbHOM KOJIbl(tB0k-i 3a3ope, tia suyrpemiefi cremie 10r0por0 noAImprrHaaeTcn nocToaHHbrB TenJloBoL 

IlOTOK, a BHelUHSll TClUlOH3OJIApoBEUla. k3J’JlbTaTbl IlOKB3blBiUO1, ‘!TO llOJIHCCTblO ptl3BHTOe TCYCHHC 

IBJllleTCII T~MRWCKH HCYCTOi?4HBbLM B 6OJlbUICti YBCTH o6nact-n OIl~LlUlXtOlUHX MpU.fCTpOB. C HCllO- 

nb30naHxeM npeanono;m~iui Crsoapra 0 @opMe onpenenenw 3na9etina 10~eswbcx Bo3bfyuemii ahmna- 
T)‘Abl B HCyCTOit¶HBO~ obnacnl. nOJl)‘YCHbI BO3MJ’IUeHHble npC@JIH OQClIHCHHOrO Te’ieHliR B n0 3THM 

pc3)‘JlbTaTaM pXC’IHT8HO )‘BCJl~eHUC HHTCHCHBHOCTU TCllJlOKl~HOC& BbCJBUiHOC 3THMH BO3yMylue- 

HHRMH. Pacnerbr xopotuo cornacytorcn c 3u2mpmfemmbHuMH II(IHHYMH. 


